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Abstract 

This paper proposes a comparison of risk parity strategy versus other asset allocation 
methodologies that don’t require expected returns as input (naïve risk parity, minimum-
variance, equally weighting). Specifically, we empirically test if risk parity is consistently better 
using two datasets that differ in terms of market conditions and in terms of the number of asset 
classes in the investment universe. The comparison is undertaken considering three evaluation 
dimensions: financial efficiency, diversification and asset allocation stability. Relatively to the 
existing literature, we strongly expand the set of tools to be implemented in order to capture 
these aspects. Our findings suggest that risk parity cannot be considered consistently superior 
relative to other μ-free strategies on the basis of the triple view we have adopted. Our results are 
in line and more robust than those achieved by Maillard, Roncalli e Teïletche (2010) and 
disagree with Chaves et al. (2012). 
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1. INTRODUCTION 

In the asset allocation context, the mean-variance optimization developed by Markowitz (1952, 1959) 

over 50 years ago represented the cornerstone of Modern Portfolio Theory (MPT) and provided the 

appropriate methodology for allocating wealth to different risky investment alternatives. Basically, the 

Markowitz model derives portfolio weights such that expected return is maximized for a given standard 

deviation (variance) level or such that volatility is minimized for a given expected return level.  

Despite its elegance, simplicity and rationality, Markowitz’s approach suffers from serious drawbacks 

when practically implemented. They mainly raise from the estimation risk associated with the necessary 

inputs (expected returns, risks and correlations/covariances) or, to be more precise, from the fact that mean-

variance optimization is commonly implemented without recognizing the parameters uncertainty (Jorion, 

1992; Kan and Zhou, 2007). Indeed, the implementation usually follows the “plug-in” rule: the required 

parameters are estimated from time series of historical returns, then fed into a mean-variance optimizer that 

treats the estimates as if they were the true parameters.  

As indicated by Michaud (1989), ignoring the existence of measurement error in the optimization 

inputs leads to undesirable features for optimal portfolios. They can be summarized in their counter-intuitive 

nature, instability, un-uniqueness and poor out-of-sample performance. These defects make it easy to 

understand Michaud’s words: “Mean-variance optimizers are, in a fundamental sense, estimation error 

maximizers”. Several authors (Best and Grauer, 1991; Chopra and Ziemba, 1993; Jorion, 1986) have 

recognized serious influences on optimized portfolios especially from estimation errors in expected returns, 

while uncertainty in second moments is less critical. 

Starting approximately from the second half of the eighties, different methodologies have been 

proposed to deal with the problem of estimation risk/errors which can be distinguished between heuristic and 

Bayesian approaches. The first group includes using the Resampling technique patented by Michaud and 

Michaud (2008) and the application of additional weights constraints (besides the classical long-only and 

budget constraints) suggested by Frost and Savarino (1988), Jagannathan and Ma (2003). Also the Bayesian 

approaches can be implemented in different ways. One application consists in the use of shrinkage estimators 

that propose estimation of expected returns by shrinking the sample mean toward a common mean (Jorion, 

1985). A second application is represented by the Black and Litterman model (1991, 1992) that combines 
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two sources of information (equilibrium returns and investor’s views) to get predictive returns. Therefore, 

heuristic approaches and Bayesian approaches take different actions to react to the impact on optimal 

portfolio construction of the imprecision of expected returns. The former acts on the model side to make the 

optimization process less deterministic or to force it to produce more diversified portfolios. The latter acts on 

the estimation side to improve expected returns estimates with respect to their sample estimates. Recently, 

also the use of a combined portfolio optimization methodology that takes advantage of both approaches has 

been investigated (Fernandes et al., 2012).  

All these methods of dealing with estimation risk keep constant the same and original framework 

while facing asset allocation problems: try to optimize the trade-off between the mean and the standard 

deviation (variance) of portfolio returns. The set of required inputs for asset allocation is unchanged relative 

to Markowitz’s framework. Estimates for expected returns are still included after that their derivation is 

improved or, as it happens with the Resampling technique, after considering that time series of returns are 

just one realization of a stochastic process. 

An alternative way to address the problem of estimation risk is the use of asset allocation strategies 

that give less room to estimation error because they require fewer types of parameters to be estimated. 

Specifically, these strategies don’t need expected returns as input in the portfolio construction process and 

therefore are distinct with respect to the classic mean-variance setting. We can simple label them as μ-free 

strategies given that μ traditionally denotes the expected returns. Different solutions corresponding to the 

above description have been suggested in the literature and have received increasing attention in the 

marketplace. In particular, emphasis has been put on the minimum-variance portfolio and on the equally 

weighted portfolio. The extensive study performed by DeMiguel, Garlappi and Uppal (2009) evaluated, on 

the basis of different datasets, the out-of-sample performance of the sample-based mean-variance portfolios 

and its “variations” designed to reduce the impact of the estimation error concluding that none of these asset 

allocation models could outperform the “1 over N” simple rule. Clarke, de Silva and Thorley (2006, 2011) 

document higher cumulative return and lower volatility for the minimum-variance portfolio relative to a 

capitalization-weighted portfolio of the largest 1000 US stocks.  

With the global financial crisis started in 2008 we have seen a growing number of papers and a 

growing interest by institutional investors about a new μ-free asset allocation approach that is called risk 
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parity strategy or equivalently risk parity portfolio. This approach suggests a portfolio composition such that 

each asset class contributes equally to portfolio risk. The novelty it brings in the portfolio construction 

process is to pay attention to risk allocation. Therefore its scientific roots are in the risk budgeting literature 

(Qian, 2005, 2006; Scherer, 2010). 

Similarly to the studies performed by Maillard, Roncalli and Teiletche (2010), by Chaves et al. (2011, 

2012) and by Anderson, Bianchi and Goldberg (2012), our objective in this paper is to propose and evaluate 

a competition between risk parity strategy and other simplified asset allocation strategies. However we 

consider all and exclusively the μ-free strategies without admitting any intrusion (like a CAPM portfolio or 

mean-variance portfolios). Our set of rival strategies then includes risk parity, naïve risk parity, minimum 

variance and equally weighting. The reason is that we are interested in investigating if a strategy, the risk 

parity, that is more challenging and tricky on the computational side, consistently dominates the alternative 

strategies that have in common the absence of expected returns as input but distinguish themselves for the 

easy way they obtain solutions for portfolio weights. Differently from existing papers, we clearly highlight 

three different evaluation dimensions for our comparison (financial efficiency, diversification and asset 

allocation stability) and considerably expand the set of tools to be used to quantify these dimensions. Our 

empirical investigation is based on two datasets with different number of asset classes in order to understand 

if our results are extremely sensitive or not to the asset class inclusion decision. While implementing each μ-

free strategy, we keep similar constraints (full investment, no short positions allowed) to make the 

competition fair. 

The rest of the paper is organized as follows. In Section 2, we describe the risk parity strategy and 

then, in Section 3, we provide a brief review of the other μ-free strategies. Section 4 contains the description 

of the datasets we use. It also gives details about the way we implement our empirical investigation. In 

Section 5, we present the various tools we apply to put to the test risk parity strategy with respect to other μ-

free strategies. Our results are reported and analyzed in Section 6. We present our conclusions in Section 7. 
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2. DESCRIPTION OF RISK PARITY STRATEGY 

The idea of risk parity strategy is to identify portfolio weights in a way that asset classes contribute 

equally to the overall portfolio risk. In other words, it wants to achieve the maximum risk diversification by 

inhibiting one or few asset classes to have a dominant role in driving portfolio volatility.  

To implement risk parity strategy, it is helpful to be familiar with two important definitions. The first 

one is the marginal risk contribution. It tells us the variation caused in the portfolio risk (measured here as 

the standard deviation) by an infinitesimal change in an asset’s weight. Considering a portfolio of N risky 

asset classes with individual weight iw  and individual volatility iσ  and covariance ijσ  between asset class i 

and j, the marginal risk  (M_Riski) can be expressed as follows: 
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The second definition refers to total risk contribution, also called component risk. It is the load on total 

risk contributed by the position iw  and is simply computed as the product of the allocation to asset class i 

and its marginal risk. Therefore it is given by (2): 
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Since portfolio risk is a homogeneous function of degree 1, conditions for Euler’s theorem are 

satisfied. Consequently, the overall portfolio risk can be expressed as the sum of component risks: 
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We can also show the percentage total risk contribution of each position (PCTRi) by (4): 
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Pursuing a risk parity strategy requires equalizing total risk contributions or component risks. 

Formally, this goal can be translated as follows: 
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This is the reason why portfolios resulting from risk parity strategies are also called ERC portfolios, equal 

risk contributions portfolios. By definition, they are portfolios that include all the N asset classes in the 

selected investment universe. The weight assigned to an asset class in the risk parity portfolio becomes 

higher the lower is its volatility and correlation with other asset classes. 

In presence of positivity and full investment constraints, finding closed-form solutions for optimal 

ERC portfolio weights is not possible due to an issue of endogeneity: iw  is a function of the risk 

contributions which, by definition, depend on iw . To this end, a numerical optimization is necessary.1 We 

follow the optimization algorithm proposed by Maillard, Roncalli and Teiletche (2010): 
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1 Chaves et al. (2012) propose two algorithms to compute portfolio weights according to the risk parity strategy that do 
not involve optimization routines but they do not allow to explicitly insert constraints.  
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The ERC portfolio is found when the function in (5), based on the variance of the risk contributions, is equal 

to zero.  

Just in a special or hypothetical situation it is possible to carry out explicit solutions: the case where 

asset classes have the same pair-wise correlations. The optimal ERC portfolio weights would be then 

proportional to the inverse of the standard deviation. Obviously, in the real world, asset classes have pair-

wise correlations that differ (different volatilities as well) but mentioning this special situation represents a 

good device to remember the existence and properties of the so called naïve risk parity o simplified risk 

parity. Under this approach, optimal weights are computed as follows: 
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With naïve risk parity a true homogeneity in asset classes’ contribution to portfolio standard deviation cannot 

be achieved because covariances/correlations are completely ignored. 

 

3. DESCRIPTION OF OTHER μ-FREE STRATEGIES 

As we said in the introduction, we also consider two additional μ-free strategies that in this section are 

briefly reviewed. We begin by analyzing the minimum-variance strategy.  

Under this strategy, portfolio weights are chosen through an optimization algorithm that requires only 

estimates of second moments (variances and covariances). It can be written as follows: 

 

10

1

s.t.

1

1 1
*

≤≤

=



=

= =

i

N

i
i

N

i

N

j
ijji

w

w        

w        

         

ww Min σ

           (8) 

 



8 
 

The resulting portfolio, usually defined as global minimum-variance portfolio (GMVP), is ex-ante the 

portfolio with the lowest possible standard deviation from which the efficient frontier starts. It is worth 

highlighting that minimum-variance strategy concentrates on reducing the overall portfolio risk as strongest 

as possible, but this doesn’t mean it is diversified from the standpoint of component risks. In fact, the GMVP 

is characterized by homogenous marginal risks but according to (2) this doesn’t imply that total risk 

contribution of all asset classes is identical.  

The other μ-free strategy is equally weighting. It is the most straightforward strategy to implement 

because it doesn’t require an optimization model given that no objective function exists. It also doesn’t need 

parameters estimates or any kind of additional information. In this case, the asset allocation problem is 

solved by simply assigning the same weight to each asset class, equal to 1/N. The unique fundamental 

decision to take is how many asset classes to include in the investment universe when there are not barriers 

to its definition. It is possible to depict a sort of parallelism between risk parity strategy and equally 

weighting strategy: the former substantially applies “1 over N” rule to risk allocation, while the latter applies 

the same concept to asset allocation.  

 

4. THE EMPIRICAL STUDY: DATASETS AND IMPLEMENTATION 

Our empirical study is based on two datasets. The first contains monthly returns for the 11 countries 

sub-indices that, until the end of 2012, were comprised in the index MSCI EMU calculated by Morgan 

Stanley Capital International (MSCI) for the Euro-zone geographical area. The sample period extends from 

January 1996 through December 2012, with a total of 204 monthly returns available. The second dataset 

includes monthly returns for the 5 countries sub-indices in the MSCI Emerging Markets Europe index 

calculated from February 1999 to January 2013, with a total of 168 observations. All returns are euro-

denominated and calculated at total return level. The datasets characteristics are summarized in Table 1.2 

 

                                                           
2 The starting point for our time series coincides with euro-denominated sub-indices availability in Thomson-
Datastream.  
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Table 1 Description of datasets 

Dataset Description Period Frequency Number of 
observations 

DATASET 1 MSCI AUSTRIA, MSCI BELGIUM, 
MSCI FINLAND, MSCI FRANCE, 
MSCI GERMANY, MSCI GREECE, 
MSCI IRELAND, MSCI ITALY, 
MSCI NETHERLANDS, MSCI 
PORTUGAL, MSCI SPAIN  

 

From 1/1996 to 
12/2012 

Monthly 204 

DATASET 2 MSCI CZECH REPUBLIC, MSCI 
HUNGARY, MSCI POLAND, MSCI 
RUSSIA, MSCI TURKEY 

From 2/1999 to 
1/2013 

Monthly 168 

 

We deeply explore the statistical properties of returns in the chosen datasets. Initially, for each dataset 

we estimate the first four moments. Table 2 reports these statistics. The market conditions, in terms of return-

risk combination, are rather different. Just to give an evidence, the highest mean return, on a monthly basis, 

for an asset class in the first dataset is 1.223%; it is 2.275% in the second dataset. The maximum monthly 

standard deviation is respectively 9.814% and 15.156%. The range of monthly volatilities is narrower for the 

first dataset; it goes from 5.538% to 9.814% while for the second dataset it goes from 7.122% to 15.156%. 

 

Table 2 Descriptive univariate statistics on monthly returns 

 Mean Standard 
deviation 

Skewness Kurtosis 

DATASET 1 
MSCI AUSTRIA  0.578% 6.740% -1.047 6.288 
MSCI BELGIUM 0.633% 5.721% -1.590 8.267 
MSCI FINLAND  1.223% 9.569% 0.137 4.469 
MSCI FRANCE 0.745% 5.538% -0.428 3.272 
MSCI GERMANY 0.810% 6.529% -0.545 4.673 
MSCI GREECE  0.248% 9.814% 0.263 4.986 
MSCI IRELAND 0.113% 6.321% -0.783 3.844 
MSCI ITALY  0.551% 6.332% 0.157 3.623 
MSCI NETHERLANDS  0.698% 5.710% -0.744 4.141 
MSCI PORTUGAL  0.611% 5.822% -0.331 4.076 
MSCI SPAIN  0.990% 6.489% -0.317 3.954 

DATASET 2 
MSCI CZECH REPUBLIC 1.554% 7.122% 0.142 3.746 
MSCI HUNGARY 0.855% 9.165% -0.433 4.300 
MSCI POLAND 0.941% 9.331% 0.013 3.444 
MSCI RUSSIA 2.275% 11.707% 0.984 6.945 
MSCI TURKEY 2.171% 15.156% 0.652 5.877 
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In Table 3 and 4 we give the multivariate summary statistics on returns by reporting correlation matrices. 

Given that all equity indices in the tables are constituents of wider geographical area indices, not so 

surprisingly all pair-wise correlations are positive. Nevertheless, we observe a quite large variation. Pair-

wise correlation ranges between 0.394 and 0.909 for asset classes in the first dataset, and between 0.374 and 

0.777 for asset classes in the second dataset.  

 

Table 3 Correlation matrix for time series of monthly returns in dataset 1 

 MSCI 
AUSTRIA  

MSCI 
BELGIUM 

MSCI 
FINLAND  

MSCI 
FRANCE 

MSCI 
GERMANY 

MSCI 
GREECE  

MSCI 
IRELAND 

MSCI ITALY  
MSCI 

NETHERLA
NDS  

MSCI 
PORTUGAL  

MSCI 
SPAIN  

MSCI AUSTRIA  1 0.700 0.394 0.657 0.624 0.568 0.601 0.624 0.678 0.552 0.580 
MSCI BELGIUM 0.700 1 0.450 0.758 0.713 0.525 0.663 0.686 0.805 0.630 0.633 
MSCI FINLAND  0.394 0.450 1 0.698 0.648 0.417 0.488 0.596 0.613 0.530 0.541 
MSCI FRANCE 0.657 0.758 0.698 1 0.909 0.593 0.638 0.860 0.888 0.726 0.811 
MSCI GERMANY 0.624 0.713 0.648 0.909 1 0.567 0.634 0.771 0.854 0.662 0.735 
MSCI GREECE  0.568 0.525 0.417 0.593 0.567 1 0.406 0.617 0.533 0.542 0.623 
MSCI IRELAND 0.601 0.663 0.488 0.638 0.634 0.406 1 0.573 0.694 0.506 0.568 
MSCI ITALY  0.624 0.686 0.596 0.860 0.771 0.617 0.573 1 0.771 0.700 0.796 
MSCI NETHERLANDS  0.678 0.805 0.613 0.888 0.854 0.533 0.694 0.771 1 0.657 0.733 
MSCI PORTUGAL  0.552 0.630 0.530 0.726 0.662 0.542 0.506 0.700 0.657 1 0.741 
MSCI SPAIN  0.580 0.633 0.541 0.811 0.735 0.623 0.568 0.796 0.733 0.741 1 

 

Table 4 Correlation matrix for time series of monthly returns in dataset 2 

 MSCI CZECH 
REPUBLIC 

MSCI HUNGARY MSCI POLAND MSCI RUSSIA MSCI TURKEY 

MSCI CZECH REPUBLIC 1 0.665 0.675 0.402 0.374 
MSCI HUNGARY 0.665 1 0.777 0.483 0.489 
MSCI POLAND 0.675 0.777 1 0.503 0.482 
MSCI RUSSIA 0.402 0.483 0.503 1 0.577 
MSCI TURKEY 0.374 0.489 0.482 0.577 1 

 

As a second step, we perform various tests of normality for the univariate returns distributions in the 

datasets. We apply the most widely used test due to Jarque and Bera (JB test) that is based on the fact that 

skewness and kurtosis are, respectively, zero and three in a Gaussian distribution. Given that JB test is 

appropriate when samples are very large, we also use the Omnibus test proposed by Doornik and Hansen 

(1994) that takes into account the finite sample bias. In addition to tests based on moments, we employ tests 

based on densities. Therefore, we consider the Kolmogorov-Smirnov test (KS test) and the Lilliefors test (LI 

test). These tests compare the empirical cumulative distribution function of returns with, respectively, an 

assumed standard normal and a normal distribution with mean and standard deviation equal to the sample 

estimates. We summarize the results from testing for normality in Table 5. The results for acceptance of the 

null hypothesis of normality at 5% confidence level are shown in bold.  
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The third step is to test for the null hypothesis that our datasets come from a multivariate normal 

distribution. We then perform the Mardia test that is based on the multivariate third and fourth moments 

statistics. The results are also given in Table 5. 

 

Table 5 Tests for normality on monthly returns 

 JB test Omnibus test KS test LI test 
 Stat. p-value Stat. p-value Stat. p-value Stat. p-value 

DATASET 1 
MSCI AUSTRIA  129.214 0.100% 202284.061 0.000% 0.436 0.000% 0.093 0.100% 
MSCI BELGIUM 321.797 0.100% 510076.835 0.000% 0.449 0.000% 0.112 0.100% 
MSCI FINLAND  18.991 0.292% 57489.169 0.000% 0.410 0.000% 0.065 3.402% 
MSCI FRANCE 6.868 3.381% 50215.134 0.000% 0.446 0.000% 0.065 3.402% 
MSCI GERMANY 33.900 0.100% 81697.915 0.000% 0.427 0.000% 0.077 0.490% 
MSCI GREECE  35.874 0.100% 67695.911 0.000% 0.404 0.000% 0.067 2.719% 
MSCI IRELAND 26.918 0.106% 85276.182 0.000% 0.446 0.000% 0.069 2.073% 
MSCI ITALY  4.130 9.580% 47250.569 0.000% 0.439 0.000% 0.049 27.551% 
MSCI NETHERLANDS  29.903 0.100% 89407.722 0.000% 0.444 0.000% 0.089 0.100% 
MSCI PORTUGAL  13.571 0.714% 58667.053 0.000% 0.437 0.000% 0.047 34.071% 
MSCI SPAIN  11.148 1.152% 56323.361 0.000% 0.429 0.000% 0.072 1.249% 

DATASET 2 
MSCI CZECH REPUBLIC 4.464 7.948% 32069.806 0.000% 0.435 0.000% 0.060 15.035% 
MSCI HUNGARY 17.091 0.422% 44252.366 0.000% 0.414 0.000% 0.053 28.942% 
MSCI POLAND 1.383 44.192% 28753.401 0.000% 0.410 0.000% 0.061 13.331% 
MSCI RUSSIA 136.056 0.100% 134338.329 0.000% 0.410 0.000% 0.079 1.184% 
MSCI TURKEY 69.837 0.100% 75359.716 0.000% 0.369 0.000% 0.088 0.315% 

MULTIVARIATE STATISTICS 
 Stat. Critical value p-value 
MARDIA test (dataset 1) 800.1227 3.2751 0.000% 
MARDIA test (dataset 2) 494.3939 50.9984 0.000% 

 

To sum up the results from our tests, we reject in general the normality assumption for our univariate 

return series and strongly reject the multinormality hypothesis. However the departure from normality looks 

more severe for the dataset containing the sub-indices in the MSCI EMU. Additionally, those asset classes 

seem to be prevalently featured by negative skewness. 

Finally, we consider a test for the null hypothesis at 5% confidence level of no serial correlation in 

asset class returns based on the Ljung-Box Q statistic (LBQ) computed up to the fourth lag. We do not find 

strong evidence that returns are serially correlated. However, executing the same test for squared returns we 

learn of time dependence in volatility for the majority of our time series. The results are presented in Table 6. 
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Table 6 Tests for serial correlation 

 LBQ on returns LBQ on squared returns 
 Stat. p-value Stat. p-value 

DATASET 1 
MSCI AUSTRIA  19.803 0.055% 50.641 0.000% 
MSCI BELGIUM 24.438 0.007% 41.084 0.000% 
MSCI FINLAND  10.176 3.757% 30.104 0.000% 
MSCI FRANCE 4.700 31.944% 13.277 1.000% 
MSCI GERMANY 1.750 78.168% 9.837 4.327% 
MSCI GREECE  8.566 7.292% 7.176 12.686% 
MSCI IRELAND 14.974 0.475% 78.221 0.000% 
MSCI ITALY  3.380 49.639% 5.372 25.120% 
MSCI NETHERLANDS  3.795 43.452% 23.965 0.008% 
MSCI PORTUGAL  9.368 5.253% 10.474 3.316% 
MSCI SPAIN  4.043 40.018% 6.944 13.889% 

DATASET 2 
MSCI CZECH REPUBLIC 7.656 10.501% 10.300 3.567% 
MSCI HUNGARY 11.781 1.906% 10.345 3.500% 
MSCI POLAND 2.338 67.390% 24.018 0.008% 
MSCI RUSSIA 9.783 4.425% 16.161 0.281% 
MSCI TURKEY 1.015 90.753% 2.760 59.881% 

 

We believe that observing departure from normality is important in order to select the reward-to-

variability ratios to use in the comparative evaluation of the selected μ-free strategies in terms of financial 

efficiency. In dealing with non-normal distributions, the exclusive application of the Sharpe ratio as in the 

previous literature would be inadequate. As argued by Farinelli and Tibiletti (2008) and Farinelli et al. 

(2008), ratios based on one-sided type measures can better serve the purpose.  

In addition, just as a curious circumstance, we can point out that a non-normal context can make the 

competition between the four μ-free strategies even more challenging: the opposing strategies “throw away” 

one statistical moment (the first moment) when four moments become appropriate to completely describe the 

selected asset classes. Obviously, this reflection would be crucial if also asset allocation strategies different 

from μ-free strategies were part in the competition because it would be unfair; however this doesn’t happen 

in our case.  

Our empirical investigation consists in an out-of-sample analysis that relies on a rolling-window 

approach for the four μ-free strategies (risk parity, naïve risk parity, minimum variance and equally 

weighting) across the two datasets. Specifically, given a T-month-long dataset of asset class returns (with 

T=204 and 168, respectively, for dataset 1 and 2) we use a rolling estimation window of 60 months. With 

these observations, we estimate the parameters required to implement a particular strategy that is 

variances/standard deviations and covariances for risk parity and minimum variance, standard 
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deviations/variances for naïve risk parity;3 obviously nothing is needed for the equally weighting strategy. 

The estimated parameters are then used to obtain optimal portfolio weights according to algorithms and 

algebraic procedure illustrated in section 2 and 3. These portfolio allocations are hold for the next 6 months. 

Afterwards, we move 6 months forward the estimation window, re-estimate the parameters and determine 

the adjusted portfolio allocations.4 Hence, in our empirical analysis μ-free strategies are rebalanced semi-

annually. The procedure just described is repeated until the end of the sample period in each dataset. With 

this approach, 25 allocation experiments are reached when μ-free strategies refer to the first dataset. This 

number decreases to 19 for the second dataset. For all asset allocation experiments, we keep the same 

constraints: non-negative portfolio weights that some to one. This is a necessary condition in order to 

compare the risk parity portfolios with other μ-free strategies in a fair way. The final outcome of our rolling-

window based procedure is a series of 144 (for dataset 1) and 108 (for dataset 2) out-of-sample monthly 

returns generated by each of the μ-free strategies under investigation. On the basis of different tests we have 

performed without reporting the results (Jarque Bera, Kolmogorov-Smirnov and Lilliefors), we can reject the 

hypothesis they follow a Gaussian distribution.5 

It is worth pointing out that these series do not suffer from a look-ahead bias. In other words, they 

come from portfolio allocations computed without using forward-looking information. Consequently, they 

represents investable strategies. In Exhibit 1 we graph the cumulative wealth evolution determined by the 

out-of-sample performance of each μ-free strategy across the two datasets. We can also observe the time 

series of portfolio weights suggested for the different strategies in Exhibit 2 and 3. Whatever the dataset 

considered, the minimum-variance strategy, that is the top performing, shows strong variations in portfolio 

weights. Obviously, this is not the case for equally weighting strategy. Risk parity shows portfolio 

compositions that seem a bit more changeable than naïve risk parity. 

                                                           
3 An investigation of different estimation techniques for second moments is beyond the scope of our contribution. 
However, given that serial correlation was detected across squared returns, it would be interesting in further research to 
consider models of conditional variance and covariance.  
4 To give an example of the empirical procedure we use, consider the first asset allocation experiment with dataset 1: we 
use observations from January 1996 through December 2000 to estimate parameters on which are based the four 
portfolios (one for each strategy) that will be held (without rebalancing) from January 2001 to June 2001. At the 
following step, with observations from July 1996 through June 2001, we obtain portfolios to be held from July 2001 to 
December 2001. 
5 We had just an exception: the null hypothesis of normality was accepted for the minimum-variance strategy in the 
second dataset according to the Lilliefors test.  
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Exhibit 1 Cumulative wealth from μ-free strategies 

 

 
 

 

 

 

Exhibit 2 Portfolio weights for μ-free strategies (dataset 1) 

 

Risk parity Naïve risk parity 

Mimimum-variance Equally weighting 
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Exhibit 3 Portfolio weights for μ-free strategies (dataset 2) 

 

Risk parity Naïve risk parity 

Mimimum-variance Equally weighting 

 
 

Given the sequence of portfolio allocations and time series of monthly out-of-sample returns generated 

by each strategy and each dataset, we can compute the measures we have chosen to evaluate the competing 

μ-free strategies.  

 

5. TOOLS FOR EVALUATING RISK PARITY STRATEGY AGAINST OTHER μ-FREE 
STRATEGIES 
 

Our goal is to compare empirically the out-of-sample performance of risk parity allocation strategy 

relative to that of other μ-free strategies in order to understand if the former is consistently better. To address 

this issue, it is useful to keep in mind that investors look for several characteristics; they like efficient, 

diversified and stable portfolios. So it is not advisable to confine the comparative analysis to a single criteria, 
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it is definitely better to consider different evaluation dimensions. They can be listed as follows: financial 

efficiency, diversification and asset allocation stability.  

Even if three of the four asset allocation strategies we consider are entirely risk-based (in the sense 

that expected returns are explicitly excluded from the portfolio construction process which is completely 

driven by risk), we remember that this is motivated by the intention to mitigate estimation risk and this 

doesn’t mean to completely disregard the reward achieved. So also proponents of μ-free strategies appreciate 

more to less efficiency. Therefore it is reasonable to acknowledge some space to risk-adjusted performance 

measures.  

However, as a preliminary comparison we will explore separately the return and risk characteristics of 

the strategies. With reference to the first quantity, we merely propose measures of cumulative performance, 

geometric and arithmetic return. Concerning risk, we are aware that different ideas are plausible. 

Consequently, in addition to the traditional standard deviation of returns, we compute measures that focus on 

the variability of underperformance with respect to an exogenous threshold level. They are downside risk 

measures (see Nawrocki, 1999 and Sortino, Van der Meer and Platinga, 1999). Also drawdown measures are 

included in our analysis. Specifically, we consider the maximum drawdown, that concentrates on a single 

event, and on the average value of drawdowns we can count over the entire out-of-sample path for each 

strategy. In the end, we take into account forward looking measures of risk. In particular, we calculate both 

one-month VaR and one-month Expected Shortfall at 99% confidence level. First, we apply parametric 

approaches assuming normal distributions. But, it was said that the out-of-sample returns from the selected 

μ-free strategies are not normally distributed. Given this evidence and that we don’t have a large set of 

return observations, we also re-estimate VaR and Expected Shortfall using bootstrapped historical 

simulations with 10000 draws.  

After that we will turn our attention to the category of reward-to-risk variability ratios. From this class, 

we select the most popular index that is the Sharpe Ratio and for its computation we use monthly returns 

from JPM Euro Cash 1Month index as a proxy for risk free rate.  

Obviously Sharpe Ratio is not the best fitting ratio in presence of non-Gaussian distributions so we 

also use ratios that modify the risk measure in order to integrate the downside risk or to consider as a penalty 

element the drawdowns encountered by each strategy. According to this reasoning we give space to Sortino 
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Ratio, with threshold level or MAR (minimum acceptable return) represented by both the risk-free rate (as in 

the original version) and a null return and also to the Performance Ulcer Index proposed by Martin and 

McCann (1989). Denoting by kR  the arithmetic mean return for strategy k, by rfR  the risk free rate and by 

DD a drawdown, the Performance Ulcer Index for strategy k is defined as follows: 
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Even if these reward-to-variability ratios overcome the problem of “Gaussian dependency” and 

recognize the existence of good and bad risk, they don’t allow to put a subjective and different emphasis on 

favourable events (overperforming a threshold) and unfavourable ones (underperforming a threshold) and 

they don’t incorporate one-sided measure for reward evaluation. We can include these desirable properties 

by carrying out the calculation of the performance ratio proposed by Farinelli and Tibiletti (2008) that is 

given by the following general form:  
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where p and q (> 0) are said, respectively, right and left orders. The higher the order the higher the weighting 

given to large deviations relative to small deviations above (in evaluating the reward) and under (in 

evaluating risk) the threshold level. We have chosen what can be considered two common parametrization of 

Farinelli-Tibiletti Ratio: the Upside Potential Ratio by Sortino, Van der Meer and Plantinga (1999) which 

corresponds to 2;1
thresholdΦ , and the Omega Index by Cascon, Keating and Shadwick (2002) which corresponds 

to 1;1
thresholdΦ . In both applications, MAR is our threshold level that we represent through the risk free rate. 
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Keeping the threshold unchanged, we add a third parametrization where p = 0.5 and q = 2. Actually we 

compute the following ratio: 
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We believe this parametrization is particularly adapt for very risk-averse investors and this is likely a profile 

to be associated with investors in risk parity strategy. Words by Qian (2006) according to which risk 

contributions can be good predictors of the contribution of each position to ex-post losses and the growing 

interest for ERC portfolio in a period of financial turmoil, suggest that risk parity portfolio investors are 

scared by huge losses and perceive them as catastrophic events; their desire for safety is much stronger that 

the desire for exceptional performance.  

As we said, the second evaluation dimension in our comparative analysis of μ-free strategies is 

represented by the level of diversification or, conversely, of concentration. This aspect is measured both in 

terms of weights and in terms of (percentage) total risk contributions for each strategy. It is captured by 

different tools. We start with the Shannon Entropy measure (SE)6 that reaches its maximum value (ln N) in 

the case each asset weight or risk contribution is identical. The other extreme value is 0 and occurs when just 

an asset weight or risk contribution is equal to 1 and the rests are all zero. Therefore, when using the 

Shannon Entropy measure the higher the value, more diversified is the portfolio or the dissemination of risk 

among asset classes. This interpretation has to be replaced when different statistics are used. Actually we 

report also the Herfindahl index (H) and the Gini coefficient (G). The former is given by the sum of the 

squared asset allocation weights or by the sum of the squared total risk contributions but we adopt a 

                                                           
6 It is defined as follows: 
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normalized version7 that ranges between 0% (perfect equality or diversification) and 100% (extreme 

inequality or concentration). For Gini coefficient computation we follow Chaves et al. (2012).8 Lower values 

for these statistics rather than higher values mean stronger diversification. Finally, with reference only to the 

asset class weights, we provide the diversification ratio proposed by Choueifaty and Coignard (2008).9 The 

inferior limit for this statistic, when long-only portfolios are considered, is 1 (which happens with mono-

asset portfolio), so values far from 1 express higher diversification and lower concentration. Two things need 

to be précised about reporting these statistics regarding the level of diversification/concentration. The first 

one is that, since we perform 25 and 19 asset allocation experiments for each strategy in our two datasets, we 

have to report average values. The second one is that we compute ex ante measures of 

diversification/concentration of risk given that reported statistics refer to each rebalance date. In other words, 

we do not account for the possible varying behaviour of these measures during the 6 months until portfolios 

are rebalanced again.10 

The last evaluation dimension included in our empirical analysis is that of portfolio stability. In order 

to capture this feature, we indicate, for each strategy and for each dataset, the average value across the asset 

allocation experiments of the turnover. For example, when the investment universe is represented by 

countries in the Eurozone, the average turnover for strategy k is defined as follows: 

 

                                                           

7 The normalized version of the Herfindahl index is given by:
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weighted average of standard deviations divided by portfolio risk.  
10 The measurement of ex-post diversification/concentration in percentage total risk contributions would be particularly 
interesting and feasible to implement with more observations available and with a longer time interval between two 
rebalancing dates.  
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where 
.rebt ik

w −_,,
 is the portfolio weight in asset class i under strategy k before re-estimation of portfolio 

allocation and 
.rebt ik

w +_,,
 is the suggested portfolio weight after rebalancing.11 This quantity can be 

interpreted as the average percentage of portfolio wealth that needs to be traded at each rebalancing date in 

order to implement each μ-free strategy. In general, high values for turnover mean higher transaction costs. 

Together with the average turnover, we also give evidence of maximum turnover.  

 

6. RESULTS 

We start by displaying in Table 7 the performance of the four μ-free strategies. To help better 

understand them, we make a preliminary note: the 12-year period from January 2001 to December 2012 at 

the back of the out-of-sample returns series for strategies based on Eurozone developed countries is 

characterized by downturns (excluding Austria, Belgium and Germany). On the contrary, the 9-year period 

from February 2004 to January 2013 covered up by the out-of-sample performances of strategies involving 

the emerging European equity markets shows strong up-movements (especially Czech Republic and Turkey).  

Whatever the market conditions, the minimum-variance strategy has the best cumulative return (and 

consequently also the best annual and monthly compounded return), followed by risk parity strategy. The 

order between the two is reversed just if we consider the arithmetic mean return. 

 

                                                           
11 In equation (11), we have 24 instead of 25 terms in the average because at the starting time each portfolio is already 
allocated according to each asset allocation strategy.  
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Table 7 Return statistics for μ-free strategies 

 RISK PARITY 
NAIVE RISK 

PARITY 
MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 DATASET 1: MSCI EMU EQUITY INDICES 

Cumulative performance -11.597% -16.156% 26.425% -21.443% 
Annualized geometric return -1.022% -1.458% 1.973% -1.991% 
Geometric mean return (monthly) -0.086% -0.122% 0.163% -0.167% 
Arithmetic mean return (monthly) 0.060% 0.025% 0.299% -0.015% 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Cumulative performance 191.231% 181.585% 201.887% 175.290% 
Annualized geometric return 12.611% 12.191% 13.062% 11.909% 
Geometric mean return (monthly) 0.995% 0.963% 1.028% 0.942% 
Arithmetic mean return (monthly) 1.274% 1.242% 1.272% 1.237% 
 

When we consider the risk profile of the μ-free strategies (Table 8), minimum-variance strategy again 

dominates in terms of standard deviation. In particular we can confirm and extend the order of volatilities 

documented by Maillard, Roncalli and Teiletche (2010). We verify for both datasets the following 

relationship: 

 

ightingEqually weparity risk Naiveparity RiskvarianceMinimum σσσσ ≤≤≤−       (13) 

 

The ordering remains the same when we consider one-side measure of variability like the downside risk 

whether the MAR is equal to the risk-free rate or whether it is a zero return. On the basis of VaR and 

Expected Shortfall, as well, the risk parity strategy is dominated by the minimum-variance strategy. 

Unsurprisingly this happens when a parametric approach based on the assumption of normality is used, but it 

is also validated by the use of bootstrapped historical simulations. The risk parity strategy is behind the 

minimum-variance strategy also in terms of drawdown statistics: the minimum-variance strategy shows a 

lower number of drawdowns, a smaller maximum drawdown and, in the case of dataset 1, also in inferior 

value for average drawdown.  

 



22 
 

Table 8 Risk statistics for μ-free strategies 

 RISK PARITY 
NAIVE RISK 

PARITY 
MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 DATASET 1: MSCI EMU EQUITY INDICES 

Monthly Standard deviation 5.342% 5.374% 5.165% 5.460% 
Monthly Downside deviation 
(threshold=MAR=Free risk) 4.242% 4.269% 3.982% 4.345% 
Monthly Downside deviation (threshold=0%) 4.112% 4.136% 3.856% 4.214% 
VaR 1M (conf. level=99%, normal) -12.367% -12.477% -11.717% -12.717% 
Var 1M (bootstrapped historical simulations 
– 10000, conf. level=99%) -15.313% -15.745% -15.311% -15.168% 
Expected Shortfall 1M (conf. level=99%, 
normal) -14.178% -14.299% -13.467% -14.567% 
Expected Shortfall 1M (bootstrapped 
historical simulations – 10000, conf. level = 
99%) -17.711% -17.604% -15.936% -17.967% 
Maximum Drawdown -62.415% -60.870% -61.810% -62.266% 
Number of drawdowns 123 128 115 127 
Average Drawdown -32.090% -31.536% -29.657% -32.581% 

 DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Monthly Standard deviation 7.410% 7.411% 6.963% 7.616% 
Monthly Downside deviation 
(threshold=MAR=Free risk) 5.114% 5.133% 4.568% 5.292% 
Monthly Downside deviation (threshold=0%) 4.998% 5.017% 4.461% 5.175% 
VaR 1M (conf level=99%, normal) -15.965% -15.999% -14.926% -16.481% 
Var 1M (bootstrapped historical simulations 
- 10000) -15.406% -15.851% -13.966% -16.437% 
Expected Shortfall 1M (conf level=99%, 
normal) -18.476% -18.510% -17.286% -19.061% 
Expected Shortfall 1M (bootstrapped 
historical simulations - 10000) -27.369% -27.010% -24.877% -27.712% 
Maximum Drawdown -66.604% -66.309% -60.757% -67.461% 
Number of drawdowns 81 84 79 83 
Average Drawdown -23.831% -23.259% -24.306% -24.506% 

 

In Table 9 we report results about the first evaluation dimension we have chosen: financial efficiency. 

On the basis of the Sharpe Ratio, that is the only risk-adjusted performance measure taken into account in 

previous empirical investigations, we obtain results that contrast with those from Chaves et al. (2011, 2012). 

They documented, for a diversified investment universe of 10 asset classes, that in terms of Sharpe Ratio the 

risk parity strategy (including its simplified version) was similar to equally weighted and outperformed the 

minimum-variance. They observed also that for a dataset including 28 commodity future sub-indices the 

Sharpe Ratio of the minimum-variance was behind that of risk parity. Differently, with reference to both our 

datasets, the risk parity strategy does not overcome the minimum-variance strategy which shows the highest 

Sharpe Ratio, but prevails both on naïve risk parity and equally weighting. Our results are therefore more in 

line with those from Maillard, Roncalli and Teiletche (2010).  
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Table 9 Reward-to-variability ratios for μ-free strategies calculated on monthly out-of-sample returns 

 RISK PARITY 
NAIVE RISK 

PARITY 
MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 
DATASET 1: MSCI EMU EQUITY INDICES 

Sharpe Ratio -0.0266 -0.0329 0.0187 -0.0398 
Sortino Ratio (Threshold = MAR = Free risk) -0.0334 -0.0415 0.0242 -0.0500 
Sortino Ratio (Threshold = MAR = 0%) 0.0147 0.0061 0.0775 -0.0036 
Upside Potential Ratio (Threshold = MAR = Free risk) 0.4759 0.4722 0.5271 0.4676 
Farinelli-Tibiletti Ratio (with parametrization p=0.5; q=2) 0.2313 0.2275 0.2662 0.2218 
Omega Index (MAR = Free risk) 0.9344 0.9193 1.0481 0.9034 
Performance Ulcer Index (or Martin Ratio) -0.0041 -0.0052 0.0031 -0.0061 
 

DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY 
INDICES 

Sharpe Ratio 0.1485 0.1442 0.1577 0.1397 
Sortino Ratio (Threshold = MAR = Free risk) 0.2152 0.2082 0.2404 0.2010 
Sortino Ratio (Threshold = MAR = 0%) 0.2549 0.2476 0.2851 0.2391 
Upside Potential Ratio (Threshold = MAR = Free risk) 0.6808 0.6776 0.7075 0.6722 
Farinelli-Tibiletti Ratio (with parametrization p=0.5; q=2) 0.3685 0.3698 0.3455 0.3682 
Omega Index (MAR = Free risk) 1.4622 1.4437 1.5148 1.4267 
Performance Ulcer Index (or Martin Ratio) 0.0448 0.0434 0.0449 0.0418 

 

The hierarchy we have obtained for the Sharpe Ratio within the two datasets is replicated when the downside 

risk is included in the risk-adjusted performance measure. Once again the minimum-variance portfolio shows 

the highest Sortino Ratio and the highest Upside Potential Ratio followed by the risk parity strategy that 

slightly overcomes naïve risk parity and equally weighting strategies. Also consideration for the Performance 

Ulcer Index doesn’t change this ordering. Through a closer examination of the ratios sharing the shape of the 

Farinelli-Tibiletti ratio, we note that even using different pairs of parameters p and q in order to reflect 

possible different investor’s weighting of the over-performance and under-performance relative to a 

threshold represented by the risk-free rate, the ranking of the μ-free strategies on the basis of their financial 

efficiency is not revolutionized. But there is an “exception” when the parameter setting is p=0.5 and q=2 that 

seems particularly proper for a conservative risk profile. Actually, under this setting that gives minor 

importance to gains relative to a threshold and weights stronger large deviations below the threshold,  risk 

parity strategy dominates both equally weighting and minimum-variance that takes the last position.  

We now turn the attention to the issue of diversification (Table 10). If it is examined from the 

perspective of portfolio weights, the equally weighted strategy is, as expected, at the top with higher 

Shannon Entropy measure and lower Herfindhal index and Gini coefficient. The risk parity strategy tends to 

have a middle positioning while at the bottom we find the minimum-variance strategy. Actually, its lowest 

standard deviation comes, especially for the European emerging markets dataset, from concentration in few 
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asset classes (see Exhibit 1 and 2).12 However, if we consider each strategy’s power in reducing total (ex-

ante) portfolio risk relative to the weighted average of individual risks, the competition restricts to risk parity 

and minimum-variance strategies. The risk parity strategy has diversification ratios of 1.442 and 1.292, 

respectively, with reference to the first and second dataset, the minimum-variance strategy has diversification 

ratios of 1.677 and 1.220.  

 

Table 10 Levels of diversification in portfolio weights for μ-free strategies (average values) 

 RISK PARITY 
NAIVE RISK 

PARITY 
MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 
DATASET 1: MSCI EMU EQUITY INDICES 

Shannon Entropy measure  2.374 2.382 1.041 2.398 
Normalized Herfindhal index 0.504% 0.315% 35.762% 0.000% 
Gini coefficient 11.311% 9.995% 78.676% 9.291% 
Diversification ratio 1.442 1.148 1.677 1.156 
 

DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Shannon Entropy measure  1.582 1.593 0.531 1.609 
Normalized Herfindhal index 13.171% 12.778% 67.325% 12.000% 
Gini coefficient 11.976% 9.382% 9.211% 8.940% 
Diversification ratio 1.292 1.165 1.220 1.167 

 

We can argue that the risk contraction is based on different conditions for the two strategies. For the 

risk parity strategy, it relies on the maximum dissemination of risk among asset classes that contribute 

equally to the total risk. In the case of minimum-variance strategy, it is pursued by concentrating the risk 

load on a small number of asset classes selected according to the inverse of their individual risk and the 

inverse of correlation with other investment alternatives. We note that, in the case of the first dataset, 

generally 4 of the 11 asset classes are in the solution for the minimum-variance portfolio and there isn’t a 

rebalancing experiment including more than 6 asset classes. For the second dataset, we generally have 3 of 

the 5 asset classes involved in the minimum-variance strategy and never more than 4. The comparisons based 

on the Herfindahl index and on the Gini coefficient confirm our reflections: they are at the extreme for risk 

parity strategy (with the lowest values) and the minimum-variance strategies (with the highest values). The 

                                                           
12 The minimum-variance portfolio on the basis of dataset 2 is strongly invested in one asset class, that is MSCI Czech 
Republic, the sub-index with the lowest standard deviation. 
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same indication comes out from the Shannon Entropy measure that achieves its highest value for the risk 

parity strategy.13 

 

Table 11 Levels of diversification in risk allocations for μ-free strategies (average values) 

 RISK PARITY 
NAIVE RISK 

PARITY 
MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 
DATASET 1: MSCI EMU EQUITY INDICES 

Shannon Entropy measure  2.398 2.395 1.041 2.382 
Normalized Herfindhal index 0.000% 0.057% 35.762% 0.327% 
Gini coefficient 0.013% 4.219% 78.676% 8.890% 
 

DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Shannon Entropy measure  1.609 1.607 0.531 1.595 
Normalized Herfindhal index 12.000% 12.112% 67.325% 12.626% 
Gini coefficient 0.000% 3.863% 70.032% 4.187% 
 

Further, we can have an interesting hindsight about what we said from the area graphs in Exhibit 4 and 

5 where we represent the risk allocations determined by each μ-free strategy within the two datasets. In 

addition to the contrast between dispersion and risk concentration, it becomes apparent the strong shifts in 

the sources of risk as a distinguishing feature of the minimum-variance strategy.  

 

                                                           
13 It is ln(11) = 2.398 for the first dataset, and ln(5) = 1.609 for the second dataset.  
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Exhibit 4 Time series of percentage total risk contributions implied by μ-free strategies (dataset 1) 

Risk parity Naïve risk parity 

Minimum-variance Equally weighting 

 
 

Exhibit 5 Time series of percentage total risk contributions implied by μ-free strategies (dataset 2) 

 

Risk parity Naïve risk parity 

 
Minimum-variance Equally weighting 
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The last evaluation dimension is the asset allocation stability. We know that large transitions in 

portfolio composition imply an intense trading activity and, therefore, we prefer low values of turnover. We 

have already seen form Exhibit 2 and 3 that minimum-variance strategy shows stronger instability. However 

we report in Table 12 both the average turnover and the maximum turnover for an additional proof. In fact, 

compared to the minimum-variance strategy, risk parity portfolios dominate in both terms (with lower 

values). We observe, however, that the average turnover and, in the case of dataset 2, also the maximum 

turnover can be lower for the naïve risk parity strategy. 

 

Table 12 Average and maximum turnover for μ-free strategies 

 RISK PARITY 
NAIVE RISK 

PARITY 
MINIMUM 
VARIANCE 

EQUALLY 
WEIGHTED 

 
DATASET 1: MSCI EMU EQUITY INDICES 

Average turnover 7.633% 6.688% 34.130% 7.265% 
Maximum turnover 15.883% 17.776% 88.960% 20.014% 
 

DATASET 2: MSCI EMERGING MARKETS EUROPE EQUITY INDICES 

Average turnover 8.886% 7.988% 20.441% 8.216% 
Maximum turnover 18.237% 17.113% 56.061% 17.493% 
 

6. CONCLUSION 

In recent years, risk parity strategy has increased in popularity. In this article, we have proposed an 

empirical investigation in order to compare this approach of investing with other asset allocation strategies 

that have in common the fact they don’t require expected returns as input for the portfolio construction 

process; namely naïve risk parity, minimum-variance and equally weighting. For all these strategies, “to get 

rid of” expected returns is a sort of “shield” against estimation risk/errors.  

This comparison has been undertaken using two different datasets composed by MSCI Emu and MSCI 

EM Europe sub-indices. Given this choice, the empirical investigation has been performed under different 

market conditions, over periods of slightly different length and considering a different number of asset 

classes included in the investment universe. Even if it goes beyond the scope of this study, our results can 

also encourage some reflections about methodologies for building equity indices.  

Differently from the existing literature, in our comparison we have distinguished three evaluation 

dimensions of the out-of-sample return series from the selected strategies: financial efficiency, level of 
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diversification and asset allocation stability. Further, for each evaluation dimension we have computed a 

broad and comprehensive set of measures. We are not aware of any other contribution on the subject with a 

similar expansion of the evaluation tools. Especially to examine financial efficiency, we have not relied only 

on the traditional Sharpe Ratio, but we have included the computation of reward-to-variability ratios that are 

based on one-sided moments to take into account that generally the selected strategies have an out-of-sample 

behaviour that does not conform to a Gaussian distribution.  

Generally speaking, our findings are in line and more robust than those achieved by Maillard, Roncalli 

e Teïletche (2010), while tend to contradict with Chaves et al. (2011, 2012). In terms of financial efficiency, 

we cannot consistently acknowledge the superiority of risk parity strategy, rather we can say it has a middle 

positioning whatever the risk-adjusted performance measure we use, in the sense that it persistently prevails 

on naïve risk parity and equally weighting but is dominated by minimum-variance. However, when we put 

risk parity strategy to the test on the basis of the other evaluation dimensions, it shows comparatively various 

points of strength: the proportions allocated to asset classes are not extremely fluctuating across the 

rebalancing dates as it happens with minimum-variance; at the same time risk parity can overcome the rival 

in terms of diversification ratio. What's more, it can achieve this result in a sound way that is with the 

maximum dissemination of risk among asset classes (that contribute equally to total portfolio standard 

deviation) and with a saving on transaction costs coming from low turnover. Even if it is not possible to 

retain  risk parity a superior μ-free strategy according to any criteria, there is an additional interesting 

hindsight that comes from our empirical investigation: its ability to overcome, mainly in terms of financial 

efficiency,what has been proposed as a natural benchmark for asset allocation that is the equally weighting 

strategy. It is a point to outline even if we are aware that a potential user has to weight the financial 

advantage with the minor simplicity on the computational side.  

Further extension of the proposed empirical investigation could include two different robustness tests. 

Specifically, we could consider different rolling windows and different rebalance cycles.  
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