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Abstract

In [10], necessary and sufficient conditions in terms of variational inequalities are intro-
duced to characterize minimizers of convex set valued functions with values in a conlinear
space. Similar results are proved in [11, 9] for a weaker concept of minimizers and weaker
variational inequalities. The implications are proved using scalarization techniques that
eventually provide original problems, not fully equivalent to the set-valued counterparts.
Therefore, we try, in the course of this note, to close the network among the various no-
tions proposed. More specifically, we prove that a minimizer is always a weak minimizer,
and a solution to the stronger variational inequality always also a solution to the weak
variational inequality of the same type. As a special case we obtain a complete character-
ization of efficiency and weak efficiency in vector optimization by set-valued variational
inequalities and their scalarizations. Indeed this might eventually prove the usefulness of
the set-optimization approach to renew the study of vector optimization.

1 Introduction

Scalar variational inequalities (for short, VI) apply to study a wide range of problems, such
as equilibrium and optimization problems, see e.g. [2], [25]. Generalizations toward vector
VI were initiated in [15]; for recent results and survey on this field see [16], [17], [26], [27].
A major peculiarity in vector valued inequalities is the necessity to introduce at least two
different solution concepts, e.g. a strong and a weak one. This approach seems to be most
natural if referred to vector optimization efficiency and weak efficiency notions.

The notion of differentiable variational inequality arises in the scalar case, when the op-
erator involved in a VI has a primitive function. This kind of VI is widely studied because
of its relation to optimization problems. Under mild continuity assumptions, scalar Minty
VI (MVI, [28], [33]) of differential type provide a sufficient optimality condition to the prim-
itive optimization problem (a result popularized as Minty variational principle), while scalar
Stampacchia VI (SVI, [37]) is only necessary. Assuming some convexity on the primitive
function (or monotonicity of the derivative) both VIs are necessary and sufficient optimality
conditions. In [5], under generalized differentiability assumptions, scalar Minty VI have been
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studied and it has been proved that the existence of a solution to such a problem implies
some regularity property on the primitive optimization problem.

The same approach has been proposed by Giannessi [15] for vector optimization. In his
seminal paper, Giannessi studied the relations between a Stampacchia type vector variational
inequality and weak efficient solutions of the primitive vector optimization problem. It has
been proved that the scalar relations hold old under stronger assumption in the vector case,
namely convexity plays a bigger role in the proof. Further researches tried to extend the result
to efficient solution, providing a stronger version of the variational inequality and highlighting
some peculiarities of the vector case unknown for scalar functions. More recently, also the
Minty variational principle has been studied and extended to the vector case. The problem
has been posed by Giannessi in [16], where the links between Minty variational inequalities
and vector optimization problems were investigated both for efficient and weak efficient so-
lutions. More recently, in [6], [38], some generalization of the vector principle have been
proposed in conjuction with weak efficient solutions. In [16], [38], the case of a differentiable
objective function f with values in Rm and a Pareto ordering cone has been studied, proving
a vector Minty variational principle for pseudoconvex functions. In [6] a similar result has
been extended to the case of an arbitrary ordering cone and a nondifferentiable objective
function. Overall, the existing literature pictures a wreath of relations, ranging between
weak and strong vector valued inequalities and weak efficiency and efficiency. Some of these
relations occur only under (generalized) convexity assumptions, some of the branches of the
wreath cannot be fixed.

Although optimization of set-valued functions has been a fast growing topic over the past
decades, very few has been proposed about variational inequalities to characterize minimality.

Since the first results by Corley [3], [4] and Dinh The Luc [31], based on a vector op-
timization approach, several papers have been proposed to provide optimality conditions.
Nevertheless, the main approach to derivatives (and therefore to the core of a variational
inequality) has been far distant form the basic differential quotient method adopted for
scalar (and vector) problems. More recently, a new paradigm, known as set-optimization,
has been proposed, compare [20],[23], [29], [30]. In this framework, the very concept of op-
timal solutions has been thought anew, together with operations among sets, now elements
of a complete ordered conlinear space. This leads to overcome some drawbacks in previous
attempt to provide variational inequalities for set-valued optimization problems (see e.g. [7]).

In [9] and [11], a notion of weak minimality for set-optimization is presented, motivated
by its relation with standard weak efficiency in vector optimization. Under certain regularity
assumptions it is proven in [9] that the solutions of the Minty type inequality are weak mini-
mizers of the primitive set-optimization problem. Under slightly weaker assumptions, a weak
minimizer of the set-optimization problem solves the Stampacchia differential variational in-
equality. Under convexity assumptions on the scalarizations, the reverse implications has
been proven in [11]. In [8] and [10], a corresponding chain of implications has been provided
for minimizers, actually for solutions of set optimization problems, and the corresponding
Minty and Stampacchia type differential variational inequalities.

The aim of this paper is to weave lose branches from the previous studies to propose
a wreath between set-optimization and set-valued variational inequalities, connecting strong
notions in [10] with their weak counterparts presented in [11]. As a special case of our results,
we obtain a wreath containing vector optimization efficient and weak efficient solutions.

The paper is organized as follows. We present the general setting of the problem and
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the basic notation and assumption in Section 2, where some details on conlinear spaces are
recalled. In Section 3 we introduce the notion of minimizer and weak minimizer in set-
optimization, as well as the scalarization technique that is used to prove main results. The
variational inequalities introduced in [11] and [10] are also recalled together with the chains
of implications proved in these papers. Section 4 completes the wreath with the main results
proving the missing implications.

When of interest, counterexamples are included to show that assumptions cannot be
relaxed. The chains of implication provided in each section are illustrated by diagrams.

2 Basics

Throughout the paper, X and Z are real vector spaces, Z locally convex and Hausdorff with
topological dual Z∗. The set U is the set of all closed, convex and balanced 0 neighborhoods
in Z, that is a 0–neighborhood base of Z. By clA, coA and intA, we denote the closed or
convex hull of a set A ⊆ Z and the topological interior of A, respectively. The conical hull of
a set A is coneA = {ta | a ∈ A, 0 < t}.

The set Z is preordered by a closed convex cone C 6= Z with nonempty topological
interior, intC 6= ∅ by means of z1 ≤C z2, if z2 ∈ {z1}+ C. The (negative) dual cone of C is
the set C− = {z∗ ∈ Z∗ | ∀z ∈ C : z∗(z) ≤ 0}. Since intC 6= ∅, there exists a weak∗ compact
base B∗ of C−, i.e. a convex subset with C− \ {0} = coneB∗ with z∗, tz∗ ∈ B∗ implying
t = 1 and any net in B∗ has a weak∗ convergent subnet, compare [1, Theorem 1.5.1]

In the sequel we consider the family of subsets of Z

G(Z,C) = {A ∈ P(Z)|A = cl co (A+ C)}

According to the order relations

A 4 B iff B ⊆ A ∀A,B ∈ G(Z,C)

the set (G(Z,C),⊇) is order complete.Indeed, for any subset A ⊆ G(Z,C) it holds

inf A = cl co
⋃
A∈A

A; supA =
⋂
A∈A

A.

assuming, by definition that when A = ∅ we have inf A = ∅ and supA = Z. Particularly,
G(Z,C) possesses a smallest element inf G(Z,C) = Z and a greatest one supG(Z,C) = ∅.

We can also introduce operations on G(Z,C), defining

∀A,B ∈ G(Z,C) : A⊕B = cl {a+ b ∈ Z | a ∈ A, b ∈ B} ;

∀A ∈ G(Z,C), ∀0 < t : t ·A = {ta ∈ Z | a ∈ A} ; 0 ·A = C,

The resulting space GM = (G(Z,C),⊕, ·, C,4) is endowed with neutral element C, ∅ dominates
the addition and 0 · ∅ = 0 · Z = C. Moreover,

∀A ⊆ G(Z,C), ∀B ∈ G(Z,C) : B ⊕ inf A = inf {B ⊕A | A ∈ A} ,

or, equivalently, the inf–residualA−�B = inf {M ∈ G(Z,C) | A 4 B ⊕M} exists for allA,B ∈
G(Z,C). It holds (compare [19, Theorem 2.1])

A−�B = {z ∈ Z | B + {z} ⊆ A} ;

A 4 B ⊕ (A−�B).

Overall, the structure of GM is that of an order complete inf–residuated conlinear space.
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Definition 2.1 A nonempty set Y together with two algebraic operations +� : Y × Y → Y
and · : IR+ × Y → Y is called a conlinear space with neutral element θ provided that
(C1) (Y,+� , θ) is a commutative monoid with neutral element θ,
(C2) The operations are compatible: (i) ∀y1, y2 ∈ Y , ∀r ∈ IR+: r · (y1+� y2) = r · y1+� r · y2,
(ii) ∀y ∈ Y , ∀r, s ∈ IR+: s · (r · y) = (rs) · y, (iii) ∀y ∈ Y : 1 · y = y, (iv) ∀y ∈ Y : 0 · y = θ.

A conlinear space (Y,+� , ·, θ) together with a order relation 4 on Y is called partially or-
dered, lattice ordered or order complete conlinear space provided that (Y,4) has the respective
structure and the order is compatible with the algebraic operations +� and ·:
(C3) (i)∀y, y1, y2 ∈ Y , y1 4 y2 imply y1+� y 4 y2+� y, and (ii) ∀y1, y2 ∈ Y , y1 4 y2, r ∈ IR+

imply r · y1 4 r · y2.
A partially ordered conlinear space (Y,+� , ·, θ,4) is called inf–residuated, when for all

v, y ∈ Y the element y−� v = inf {u ∈ Y | y 4 v+� u} exists. In this case, y−� v is called the
inf–residual of y and v.

We refer to [12, 13, 14, 19, 20, 32] for a more thorough study of this structure. For the
sake of completeness, we recall that it can be proven that a partially ordered conlinear space
is inf–residuated, if and only if for all y ∈ Y and all A ⊆ Y such that inf A exists, it holds
(y+� inf A) = inf {y+� a | a ∈ A}, compare [19, Theorem 2.1]. The structure of conlinear space
may be better understood refereing to the following example.

Example 2.2 Let us consider Z = IR, C = IR+. Then G (Z,C) = {[r,+∞) | r ∈ IR}∪{IR}∪
{∅}, and GM can be identified (with respect to the algebraic and order structures which turn
G (IR, IR+) into an ordered conlinear space and a complete lattice admitting an inf-residuation)
with IR = IR ∪ {±∞} using the ’inf-addition’ +� (see [19, 34]). The inf-residuation on IR is
given by

r−� s = inf
{
t ∈ IR | r ≤ s+� t

}
for all r, s ∈ IR, compare [19] for further details.

Basic notions from real analysis can be easily extended to set–valued functions mapping
onto the conlinear space GM. For instance a function f : X → GM is called convex when

∀x1, x2 ∈ X, ∀t ∈ (0, 1) : f (tx1 + (1− t)x2) 4 tf (x1) +� (1− t) f (x2) .

Moreover f is called positively homogeneous when

∀0 < t,∀x ∈ X : f (tx) 4 tf (x) ,

and it is called sublinear if it is positively homogeneous and convex. As a standard notation,
we refer to the image set of a subset A ⊆ X through f by f [A] = {f(x) ∈W | x ∈ A} ⊆ GM
and to the (effective) domain of a function f : X → GM is the set dom f = {x ∈ X | f(x) 6= supGM}.
A function f : X → GM is called proper, if dom f 6= ∅ and inf GM /∈ f [X].

Dealing with set–valued functions f : X → GM, scalarization is a common tool for opti-
mization problems. We first recall that the recession cone of a nonempty closed convex set
A ⊆ Z is the closed convex cone 0+A = {z ∈ Z | A+ {z} ⊆ A}, compare [39, p.6]. By defi-
nition, 0+∅ = ∅ is assumed. If A ∈ GM \ {∅}, then 0+A = A−�A and C ⊆ 0+A are satisfied.
Especially, int (0+A) 6= ∅ and (0+A)− ⊆ C−, hence B∗ ∩ (0+A)− is a weak∗ compact base of
(0+A)−.
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Each element of GM is closed and convex and A = A+C, hence by a separation argument
we can prove

∀A ∈ GM : A =
⋂

z∗∈B∗
{z ∈ Z | − σ(z∗|A) ≤ −z∗(z)} , (2.1)

where σ(z∗|A) = sup {z∗(z) | z ∈ A} is the support function of A at z∗. Therefore, A = ∅ if
and only if there exists a z∗ ∈ B∗ such that −σ(z∗|A) = +∞, or equivalently if the same
holds true for all z∗ ∈ B∗.

According to this notation, introducing the family of scalarizations for f : X → GM as the
extended real-valued functions ϕf,z∗ : X → IR ∪ {±∞} defined by

∀z∗ ∈ C− \ {0} : ϕf,z∗ (x) = inf {−z∗ (z) | z ∈ f (x)}

we obtain from (2.1) the following representation of f

∀x ∈ X : f (x) =
⋂

z∗∈B∗
{z ∈ Z | ϕf,z∗ (x) ≤ −z∗ (z)} .

Some properties of f are inherited by its scalarizations and vice versa. For instance, f is
convex if and only if ϕf,z∗ is convex for each z∗ ∈ B∗.

To some extent, continuity or its relaxations are a common assumption in variational
inequality applications to optimization. The following definition summarize those continuity
concepts that are used in the sequel.

Definition 2.3 (a) Let ϕ : X → IR be a function, x0 ∈ X. Then ϕ is said to be lower
semicontinuous (l.s.c.) at x0, iff

∀r ∈ IR : r < ϕf,z∗(x0) ⇒ ∃U ∈ U : ∀u ∈ U : r < ϕf,z∗(x0 + u).

(b) A set Ψ =
{
ϕi : X → IR | i ∈ I

}
is lower equicontinuous in x0 ∈

⋂
i∈I

domϕi, if

∀ε > 0 ∃W ∈ UX(0) ∀x ∈ x0 +W ∀i ∈ I : ϕi(x0) ≤ ϕi(x) + ε

(c) Let ψ : S ⊆ X → Z be a function, then ψ is called C–continuous at x0 ∈ S, iff

∀V ∈ U(ψ(x0)) ∃U ∈ U(x0) ∀x ∈ S ∩ U : ψ(x) ∈ V + C;

(d) Let F : X → P(Z) be a function, then F is called upper Hausdorff continuous at x0 ∈ S,
iff

∀V ∈ U(0) ∃U ∈ U(x0) ∀x ∈ U : F (x) ⊆ F (x0) + U ;

(e) Let f : X → GM be a function, M∗ ⊆ C− \ {0}. Then f is said M∗– lower semicontiuous
(M∗–l.s.c.) at x0, iff ϕf,z∗ is l.s.c. at x0 for all z∗ ∈M∗.

(f) Let f : X → GM be a function. If

f(x) 4 lim inf
u→0

f(x+ u) =
⋂
U∈U

cl co
⋃
u∈U

f(x+ u)

is satisfied, then f is lattice lower semicontinuous (lattice l.s.c.) at x. A function f :
X → GM is lattice l.s.c. if and only if it is lattice l.s.c. everywhere.
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In [24], it has been proven that if f is C− \{0}–l.s.c. at x, then it is also lattice l.s.c. at x.
Since we assume intC 6= ∅, f is C− \{0}–l.s.c. at x if and only if f is B∗–l.s.c. at x. One can
show that if f is convex, then f is lattice l.s.c. if and only if graph f = {(x, z) | z ∈ f(x)} ⊆
X × Z is a closed set with respect to the product topology, see [21].

In [9, Proposition 2.3] it has been proven that f : X → GM is upper Hausdorff continuous
at x0 ∈ domF , if and only if Ψ =

{
ϕf,z∗ : X → IR | z∗ ∈ B∗

}
is lower equicontinuous at x0 in

which case f is B∗- lower semicontinuous at x0 which in turn implies lower lattice continuity
at x0, compare [24] for a detailed study of continuity concepts for set valued functions.

Remark 2.4 In this paper we mainly refer to GM–valued functions. However this is not a
restriction as any set–valued function F : X → P(Z) can be associated to its epigraphical, or
GM, extension given by FC : X → GM defined by

FC(x) =

{
cl co (F (x) + C) , if F (x) 6= ∅
F (x) = ∅ elsewhere.

Recalling that C–convexity of F is defined by

∀x, y ∈ X, ∀t ∈ (0, 1) : tF (x) + (1− t)F (y) ⊆ F (tx+ (1− t)y) + C.

we have that FC is convex if F is C–convex.
Moreover, any vector–valued function ψ : S ⊆ X → Z can be regarded as a set–valued function
on X defined as F (x) = {ψ(x)} whenever x ∈ S and F (x) = ∅. Therefore we can always
associate to a vector–valued function its GM extension ψC = FC : X → GM.
Obviously, domψC = S and for all z∗ ∈ B∗ it holds

ϕψC ,z∗(x) =

{
−z∗ψ(x) ∈ IR if x ∈ S
+∞ elsewhere.

Therefore ψ is C–continuous at x ∈ S if and only if
{
−z∗ψ : X → IR | z∗ ∈ B∗

}
is lower

equicontinuous at x (see e.g. [11, Lemma 2.14]). If additionally the ordering cone C (and
hence C− \{0}) is polyhedral, then ψ is C–continuous, if and only if ψC is B∗-l.s.c. at x (see
[31, Corollary 5.6]). Under the same assumption on C, lower semicontinuity of a finite set
of scalarizations, namely those with respect to the extreme directions of C− \ {0}, is known
to be equivalent to C–continuity of ψ.

Finally we define the restriction of a set valued function f : X → GM to a segment with
end points x0, x ∈ X as fx0,x : IR→ GM, given by

fx0,x(t) =

{
f(x0 + t(x− x0)), if t ∈ [0, 1] ;

∅, elsewhere.

Setting xt = x0 + t(x− x0) for all t ∈ IR, the scalarization of the restricted function fx0,x is
equal to the restriction of the scalarization of f for all z∗ ∈ C− \ {0}.

An immediate generalization of the results in the remainder of this note is to replace
convexity of f by radial convexity of f at x0, meaning that fx0,x : IR→ GM is convex for all
x ∈ X and likewise replacing lower semicontinuity by the corresponding radial definition. In
[9] and [8], the convexity assumption is dropped and replaced by more general monotonicity
assumptions on the scalarization of the set valued function.
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3 Minimality and variational inequality formulation

In set–optimization several notions of minimimality can be defined through the order intro-
duced in GM. In this paper we focus on the following definitions that introduce two different
notions, a stronger and a weaker one, respectively.

Definition 3.1 [23] Let f : X → GM be a function. Then x0 ∈ dom f is called a minimizer
of f , if the following holds true.

∀x ∈ X : (f(x) 4 f(x0) ⇒ f(x) = f(x0)) . (Min)

Definition 3.2 [11] Let f : X → GM be a function. Then x0 ∈ dom f is called a weak l,
scalarized weak or weak minimizer of f , if either f(x) = Z, or

∀x ∈ X : f(x0) * int f(x); (w-l-Min)

∀x ∈ X ∃z∗ ∈ B∗ : ϕf,z∗(x0) ≤ ϕf,z∗(x) 6= −∞; (w-sc-Min)

∀x ∈ X ∀U ∈ U : f(x0)⊕ U * f(x). (w-Min)

The chain of implications in Definition 3.2 is (w-l-Min)⇒(w-sc-Min)⇒(w-Min) (see [11,
Proposition 2.11]) hence each weak-l-minimizer of f in the sense of [22] is a weak minimizer.
Moreover, if f = FC : X → GM and F (x0) is a compact set, then the three types of weak
minimizers coincide [9, Proposition 2.1]. The motivation of our naming lays in the special
case f = ψC . Then x0 ∈ dom f is a weak minimizer of f if and only if ψ(x0) is a weakly
efficient element of ψ [X], i.e. for all x ∈ dom f it holds ψ(x0) /∈ ψ(x) + intC. Likewise, x0

is a minimizer of f if and only if ψ(x0) is an efficient element of ψ [X], i.e. for all x ∈ dom f
ψ(x0) ∈ ψ(x) + C implies ψ(x) ∈ ψ(x0) + C.

To introduce a variational inequality associated to the set–optimization of f : X → GM,
we first need a notion of derivative of f . Recent results on scalar and vector Minty type
variational inequalities such as [5, 6] have used the concept of (lower) Dini derivative to state
the problem. The structure of inf–residuated image space allows to propose such a derivative
also for set–valued maps. We had rather present the definition on a general setting, than
restricting it to the GM case that will be applied for the main result. Doing so, we can stress
how the next definition allows to extend the Dini derivative of scalar valued functions to
extended real valued functions (see e.g. [21, 35]).

Definition 3.3 Let Y be a inf–residuated order complete conlinear space, f : X → Y and
x, u ∈ X. The upper and lower Dini directional derivative of f at x in direction u are given
by

f↑(x, u) = lim sup
t↓0

1

t

(
f(x+ tu)−� f(x)

)
= inf

0<s
sup

0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
;

f↓(x, u) = lim inf
t↓0

1

t

(
f(x+ tu)−� f(x)

)
= sup

0<s
inf

0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
.

If both derivatives coincide, then f ′(x, u) = f↑(x, u) = f↓(x, u) is the Dini directional deriva-
tive of f at x in direction u.
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As the Dini derivatives are defined ’radially’, it is easy to see that following statements hold
under radial assumptions, too. For notational simplicity, we refrain from this generalization,
hoping to improve the clarity of the general scheme presented.

Remark 3.4 Definition 3.3 actually provides a generalization of the classical notion of Dini
derivative for scalar valued functions. Indeed let ϕ : X → IR be an extended valued scalar
function. If ϕ(x+ tu) ∈ IR is satisfied for all t ∈ [0, t0] for a given 0 < t0, then the differential
quotient is real, too, hence in this case the above defined derivatives coincide with the standard
definition in the literature, compare [18]. If x /∈ domϕ, then ϕ(x+ tu)−�ϕ(x) = −∞ for all
t > 0, so ϕ′(x, u) = −∞. On the other hand, if ϕ(x) = −∞, then ϕ(x + tu)−�ϕ(x) = −∞,
whenever ϕ(x+ tu) = −∞ and ϕ(x+ tu)−�ϕ(x) = +∞, else. The value of the derivatives in
this case depends on the behavior of ϕ in a proximity of x.

The following characterization of the Dini derivative extends a classical result to set-valued
functions.

Proposition 3.5 [11, Proposition 3.4] Let Y be a inf–residuated order complete conlinear
space, f : X → Y . If f is convex, then the Dini derivative exists for all x, u ∈ X and it holds

f ′(x, u) = inf
0<t

1

t

(
f(x+ tu)−� f(x)

)
.

Moreover, f ′ : X ×X → Y is sublinear in its second component.

If Y = GM, then for all x, u ∈ X and 0 < s the directional derivative of a convex function
f : X → GM is

f ′(x, u) = cl
⋃

0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
,

the differential quotient is decreasing as t converges towards 0. Moreover, as intC 6= ∅ is
assumed,

int f ′(x, u) =
⋃

0<t≤s
int

1

t

(
f(x+ tu)−� f(x)

)
is satisfied for all x, u ∈ X and all 0 < s, compare [11, Lemma 3.5].

Proposition 3.6 Let f : X → GM be a convex, set valued function, then

lim inf
t↓0

1

t

(
f(x+ tu)−� f(x)

)
=
⋂
0<s

cl
⋃

0<t<s

1

t

(
f(x+ tu)−� f(x)

)
,

the upper Painleve Kuratowski limit of the differential quotient, compare [31][p. 21].

Proof. Indeed, we only need to check the convexity of the set
⋃

0<t<s

1
t (f(x+ tu)−� f(x)).

Let z1, z2 ∈
⋃

0<t<s

1
t (f(x+ tu)−� f(x)) be given, then there exists 0 < t1, t2 < s such that

f(x) + tizi ⊆ f(x+ tiu)
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is true for i = 1, 2. Let r ∈ [0, 1] be given, t0 = (1− r)t1 + rt2. By convexity of the set f(x)
it holds

f(x) + t0

(
(1− r)t1

t0
z1 +

rt2
t0
z2

)
= (1− r) (f(x) + t1z1) + r (f(x) + t2z2) ,

hence by convexity of the function f

f(x) + t0

(
(1− r)t1

t0
z1 +

rt2
t0
z2

)
⊆ (1− r)f(x+ t1u) + rf(x+ t2u) ⊆ f(x+ t0u),

implying co {z1, z2} ⊆
⋃

0<t<s

1
t (f(x+ tu)−� f(x)).

�

We need also to use relations between the Dini derivative of the set–valued function and
those of its scalarization.

Proposition 3.7 [10, Proposition 2.36] Let f : X → GM be a convex function, x, u ∈ X.
Then ⋂

z∗∈B

{
z ∈ Z | ϕ′f,z∗(x, u) ≤ −z∗(z)

}
4 f ′(x, u);

∀z∗ ∈ C− \ {0} : ϕ′f,z∗(x, u) ≤ −σ(z∗|f ′(x, u)).

Although in general taking the scalarization of the derivative is not equal to the derivative
of the scalarization, the equivalence occurs in the special case of the epigraphical extension
of a vector valued function.

Proposition 3.8 [11, Proposition 3.10] Let ψ : S ⊆ X → Z be a C–convex vector valued
function, f = ψC : X → GM its epigraphical extension, x, u ∈ X. Then for all z∗ ∈ C− \ {0}
it holds

∀z∗ ∈ C− \ {0} : −σ(z∗|f ′(x, u)) = ϕ′f,z∗(x, u). (SR)

For a general function f : X → GM if (SR) is satisfied, then also the weaker condition

f ′(x, u) =
⋂

z∗∈B∗

{
z ∈ Z | ϕ′f,z∗(x, u) ≤ −z∗(z)

}
(WR)

holds true. Again, when f : X → GM is the epigraphical extension of a C–convex vector
function ψ : S ⊆ X → Z, then Property (WR) is satisfied.

In the sequel, property (SR) will be refereed to as strong regularity, while property (WR)
as weak regularity.

Attempts to characterize minimizers and weak minimizers in set-optimization through
varaitional inequalities have been proposed in [8], [10] and [9], [11]. We recall the definitions
of Stampacchia and Minty variational inequalities and their scalarizations used in the previous
papers.

Definition 3.9 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the set
valued Stampacchia inequality, if and only if

f(x0) = Z ∨ ∀x ∈ dom f : f(x) 6= f(x0) ⇒ 0 /∈ f ′(x0, x− x0). (SV IM )
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Definition 3.10 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the
scalarized Stampacchia inequality, if and only if

f(x0) = Z ∨ ∀x ∈ dom f : f(x) 6= f(x0) ⇒ ∃z∗ ∈ B∗ : 0 < ϕ′f,z∗(x0, x− x0). (sviM )

Definition 3.11 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the set
valued Minty inequality, if and only if

∀x ∈ X : f(x) 6= f(x0) ⇒ f ′(x, x0 − x) 6⊆ 0+f(x). (MV IM )

Definition 3.12 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the
scalarized Minty inequality, if and only if

∀x ∈ X : f(x) 6= f(x0) ⇒ ∃z∗ ∈ B∗ : ϕf,z∗(x) 6= −∞ ∧ ϕ′f,z∗(x, x0−x) < 0. (mviM )

In [10], the following scheme has been proved for convex set valued functions f : X → GM

Proposition 3.13 Let f : X → GM be a convex function, x0 ∈ dom f .

(a) The following implications hold without further assumptions.

(sviM ) ⇒ (SV IM ) ⇒ (Min) ⇒ (mviM ) ⇐ (MV IM );

(b) If the weak regularity assumption (WR) is satisfied, then ((sviM ) ⇔ (SV IM )) is true,
strong regularity (SR) implies ((mviM ) ⇔ (MV IM ))

(c) If f is B∗–l.s.c. in x0 and the set B∗ in (mviM ) can be replaced by a finite subset
M∗ ⊆ B∗, then ((Min)⇔ (mviM )) is true.

(d) Especially, if ψ : S ⊆ X → Z is given, f(x) = ψC(x) for all x ∈ X, then

(sviM ) ⇔ (SV IM ) ⇒ (Min) ⇒ (mviM ) ⇔ (MV IM )

is satisfied. If additionally the ordering cone C is polyhedral and f is B∗–l.s.c. at x0,
then the following scheme is true.

(sviM ) ⇔ (SV IM ) ⇒ (Min) ⇔ (mviM ) ⇔ (MV IM ).

The assumption of C polyhedral to prove that (mviM ) implies (Min) cannot be dropped,
as the following example shows.
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Example 3.14 Let X = IR and Z = l∞ be given with the usual ordering cone C =
{z ∈ Z | ∀n ∈ IN zn ≥ 0}. The function f = ψC : X → G(Z,C) is defined with domψ =
[−1, 1] and

∀x ∈ domψ ∀n ∈ N : (ψ(x))n = max

{
(
√
n2 − 1− n)(x+ 1),

1

n−
√
n2 − 1

(x− 1)

}
Then −e∗n = (0, ..., 0,−1, 0, ...) ∈ C− \ {0} and ϕf,−e∗n(x) = (ψ(x))n is true for all n ∈ IN
and all x ∈ [−1, 1]. Especially, f is convex and radially upper Hausdorff continuous in 1.
However,

∀ − 1 < x < 1 : f(1) ( f(x),

while

ϕ′f,−e∗n(x, 1) =

{√
n2 − 1− n, if x <

√
n2−1
n ;

1
n−
√
n2−1

, if x ≥
√
n2−1
n .

As directional derivatives are positively homogeneous, this implies (mviM ) is satisfied at 1,
but 1 is not a minimizer of f .

Weaker inequalities can be introduced as well to characterize weak efficiency.

Definition 3.15 Let f : X → GM be a convex function, then x0 solves the weak set valued
Stampacchia inequality, if and only if

f(x0) = Z ∨ ∀x ∈ X : 0 /∈ int f ′(x0, x− x0). (SV IW )

Definition 3.16 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the
weak scalarized Stampacchia inequality, if and only if

f(x0) = Z ∨ ∀x ∈ X : ∃z∗ ∈ B∗ : 0 ≤ ϕ′f,z∗(x0, x− x0). (sviW )

Definition 3.17 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the
weak set valued Minty inequality, if and only if

f(x0) = Z ∨ ∀x ∈ X : f ′(x, x0 − x) * int 0+f(x). (MV IW )

Definition 3.18 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 solves the
weak scalarized Minty inequality, if and only if

f(x0) = Z ∨ ∀x ∈ X : ∃z∗ ∈ B∗ : ϕf,z∗(x) 6= −∞ ∧ ϕ′f,z∗(x, x0 − x) ≤ 0. (mviW )

In [9, 11], the following scheme has been proved for convex set valued functions f : X →
GM.

Proposition 3.19 Let f : X → GM be a convex function, x0 ∈ dom f .

(a) The following implications hold without further assumptions.

(sviW ) ⇒ (w-sc-Min) ⇒ (mviW ) ⇐ (MV IM );

(sviW ) ⇒ (SV IW ) ⇔ (w-Min);
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(b) If the strong regularity assumption (SR) is satisfied, then the following implications hold
with equivalence.

(SV IW ) ⇔ (sviW ) ⇔ (w-sc-Min) ⇔ (w-Min)

(c) If the set B∗ in (w-sc-Min) can be replaced by a finite subset M∗ ⊆ B∗, then the follwoing
equivalence is satisfied.

(sviW )⇔ (w-sc-Min)

(d) If the set B∗ in (mviW ) can be replaced by a finite subset M∗ ⊆ B∗ and f is M∗–l.s.c.
in x0, then

(sviW ) ⇔ (w-sc-Min) ⇔ (mviW )

(e) If f = FC with F (x0) ⊆ Z compact, then

(SV IW ) ⇔ (sviW ) ⇔ (w-sc-Min) (⇔ (w-Min) ⇔ (w-l-Min)) .

(f) If f = FC with F (x0) ⊆ Z compact, the scalarizations ϕMf,z∗ are proper for all z∗ ∈ B∗
and fx0,x is upper Hausdorff continuous for all x ∈ dom f , then

(SV IW ) ⇔ (sviW ) ⇔ (w-Min) ⇔ (mviW ).

(g) Especially, if ψ : S ⊆ X → Z is given, f(x) = ψC(x) for all x ∈ X, then

(SV IW ) ⇔ (sviW ) ⇔ (w-Min) ⇔ (w-sc-Min) ⇒ (mviM ) ⇔ (MV IM )

is satisfied. If additionally ψx0,x is C-continuous for all x ∈ S or if the ordering cone
C is polyhedral and f is radially B∗–l.s.c. at x0, then all implications are satisfied with
equivalence.

(SV IM ) ⇔ (sviM ) ⇔ (w-Min) ⇔ (w-sc-Min) ⇔ (w-l-Min) ⇔ (mviM ) ⇔ (MV IM ).
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In general a solution to the scalarized Minty variational inequality (mviM ) is not a solution
to the set-valued one, as the following example shows.

Example 3.20 Let X = IR, Z = IR2 and C = IR2
+ be given, x0 = 2

3 and f : IR→ GM with

f(x) =

{{
z = (z1, z2)T ∈ IR2 | z1 + z2 ≥ (1− 1

2x), z1 ≥ x, z2 ≥ x
}
, if 0 ≤ x ≤ 2

3 ;

∅, elsewhere.

Then f(0) =
{

(x, 1− x)T | 0 ≤ x ≤ 1
}

+ C is the sum of a compact set and C, f is con-
vex and upper Hausdorff continuous in the domain and each scalarization is proper. Let

z∗ = (−1,−1)T , then ϕMf,z∗(0) = 1 and
(
ϕMf,z∗

)′
(0, 1) = −1

2 while f ′(0, 1) = (1, 1)T + C ⊆
int 0+f(0). So (mviM ) (and (mviW )) is satisfied even with a finite subset of B∗ but (MV IM )
(and MV IW ) is not satisfied. Especially, (SR) is not satisfied.

4 Main Results

While minimizer clearly are weak minimizer, we still need to prove that the same implication
holds between the strong and the weak formulation of the variational inequalities. This
result closes the loop between the previous schemes, providing a complete wreath between
variational inequalities and minimality.

The following results prove the relations holding between the four couples of inequalities
introduced in the previous section.

Proposition 4.1 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 solves (SV IM ),
then it also solves (SV IW ) and f(x) = f(x0) implies that fx0,x is constant on [0, 1].

Proof. Assume f(x) = f(x0) and f(xt) 6= f(x) for some t ∈ (0, 1). By convexity, f(x0) (
f(xt) is satisfied, hence

0 ∈ f(x)−� f(x0) ⊆ f ′(x0, x− x0).

On the other hand, the derivative is positively homogeneous, hence

(1− t)f ′(x0, x− x0) = f ′(x0, xt − x0)

and thus by (SV IM )
0 /∈ f ′(x0, xt − x0)

a contradiction. Hence in this case fx0,x is constant on [0, 1] and

f ′(x0, x− x0) = 0+f(x0)

In this case, 0 ∈ int f ′(x0, x − x0) implies f(x0) = Z, the set valued weak Stampacchia
inequality is satisfied for all x ∈ dom f .

If x /∈ dom f , then either dom fx0,x ∩ (0, 1) = ∅ and f ′(x0, x − x0) = ∅, or it exists a
t ∈ (0, 1) such that f(xt) 6= ∅. In this case, the same argument as above proves the state-
ment, replacing x by xt. �
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Proposition 4.2 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 solves (sviM ),
then it also solves (sviW ) and f(x) = f(x0) implies that fx0,x is constant on [0, 1].

Proof. Assume f(x) = f(x0) and f(xt) 6= f(x) for some t ∈ (0, 1). By convexity, f(x0) (
f(xt) is satisfied, hence

(1− t)ϕ′f,z∗(x0, x− x0) = ϕ′f,z∗(x0, xt − x0) ≤ ϕf,z∗(xt)−�ϕf,z∗(x0) ≤ 0

is satisfied for all z∗ ∈ B∗ and (sviM ) implies the existence of z̄∗ ∈ B∗ such that

0 < ϕ′f,z̄∗(x0, xt − x0).

But this implies ϕf,z̄∗(x0) < ϕf,z̄∗(xt), a contradiction. Hence in this case fx0,x is constant
on [0, 1] and

∀z∗ ∈ B∗ : ϕf,z∗(x0) = −∞ ∨ ϕ′f,z∗(x0, x− x0) = 0.

In this case, ϕf,z∗(x0) = −∞ for all z∗ ∈ B∗ implies f(x0) = Z, the scalarized weak Stam-
pacchia inequality is satisfied for all x ∈ dom f .

If x /∈ dom f , then either dom fx0,xB
∗ ∩ (0, 1) = ∅ and ϕ′f,z∗(x0, x − x0) = +∞ for all

z∗ ∈ B∗, or it exists a t ∈ (0, 1) such that f(xt) 6= ∅. In this case, the same argument as
above proves the statement, replacing x by xt. �

Proposition 4.3 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 solves (mviM ),
then it solves (mviW ).

Proof. Under the assumption of (mviM ), let f(x) = f(x0) be satisfied. By convexity,
ϕf,z∗(xt) ≤ ϕf,z∗(x) is true for all z∗ ∈ B∗ and all t ∈ (0, 1). Thus either fx0,x is constant on
[0, 1], in which case f(x0) = Z or ϕ′f,z∗(x, x0 − x) = 0 for all z∗ ∈ B∗ with ϕf,z∗(x0) 6= −∞,
or there exists a t ∈ (0, 1) such that f(xt) ) f(x). In this case, by assumption there exists a
z∗ ∈ B∗ such that −∞ 6= ϕf,z∗(xt) ≤ ϕf,z∗(x) and ϕ′f,z∗(xt, x0 − xt) < 0. By convexity of f
this implies ϕ′f,z∗(x, x0 − x) < 0. �

Proposition 4.4 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 solves (MV IM ),
then it solves (MV IW ).

Proof. Under the assumption of (MV IM ), let f(x) = f(x0) be satisfied. By convexity,
f(xt) 4 f(x) is true for all t ∈ (0, 1). Thus either fx0,x is constant on [0, 1], in which case
f(x0) = Z or f ′(x, x0 − x) = 0+f(x) * int 0+f(x), or there exists a t ∈ (0, 1) such that
f(xt) ) f(x). In this case, by assumption f ′(xt, x0 − xt) * 0+f(xt). Let s ∈ (0, 1), then

f ′(x, x0 − x) ⊇ 1

s+ t− st
(
f(xt + s(x0 − xt))−� f(x)

)
⊇ 1

s+ t− st
((
f(xt + s(x0 − xt))−� f(xt)

)
⊕
(
f(xt)−� f(x)

))
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By assumption, f(x) ⊆ f(xt), hence

0+f(xt) ⊆
(
f(xt)−� f(x)

)
,

which implies (
f(xt + s(x0 − xt))−� f(xt)

)
⊕
(
f(xt)−� f(x)

)
⊇
(
f(xt + s(x0 − xt))−� f(xt)

)
⊕ 0+f(xt)

=f(xt + s(x0 − xt))−� f(xt)

and therefore

f ′(x, x0 − x) ⊇ s

s+ t− st

(
1

s
f(xt + s(x0 − xt))−� f(xt)

)
.

Moreover, f ′(xt, x0 − xt) * 0+f(xt), hence choosing s ∈ (0, 1) small enough,

1

s

(
f(xt + s(x0 − xt))−� f(xt)

)
* 0+f(x)

is satisfied, proving

f ′(x, x0 − x) *
s

s+ t− st
0+f(x),

for some s ∈ (0, 1). Thus f ′(x, x0 − x) * int 0+f(x), as desired. �
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Overall, we provided the following implications.

If additionallyf = ψC is assumed, i.e. f is the epigraphical extension of a vector valued
function, then the solution sets of scalarized and set valued versions of each variational
inequality coincide and the following scheme represents the implications proven.

We remark that the latter scheme is a straightforward extension of the scheme of relations
originally provided by Giannessi for his vector variational inequalities in vector optimization.
Therefore, as an application, we have proved that set–optimization approach provides a useful
tool to study vector optimization, by considering the epigraphical extension of the objective
function. The main advantage we see in this approach is to work in an order complete space,
rather than a partially ordered space.
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[26] S. Komlósi. On the Stampacchia and Minty variational inequalities. In G. Giorgi and
F. Rossi, editors, Generalized Convexity and Optimization for Economic and Financial
Decisions, pages 231–260. Pitagora Editrice, Bologna, Italy, 1999.

[27] J. Li and G. Mastroeni. Vector variational inequalities involving set-valued mappings via
scalarization with applications to error bounds for gap functions. Journal of Optimization
Theory and Applications, 145(2):355–372, 2010.

[28] J.L. Lions and G. Stampacchia. Variational inequalities. Communications on Pure and
Applied Mathematics, 20(3):493–519, 1967.
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[39] C. Zălinescu. Convex analysis in general vector spaces. World Scientific Publishing Co.
Inc., River Edge, NJ, 2002.

19





 

 

 

LISTA DEI WORKING PAPER 2012 

1. Resmini, L., Siedschlag, I., Is Foreign Direct Investment in China Crowding Out the Foreign Direct In-
vestment in other Countries? , Se embre 2012. 

2. Crespi, G. P., Ginchev, I., Rocca, M., Robunov, A., Convex along lines func ons and abstract convexi-
ty. Part II , O obre 2012. 

3. Alderighi, M., Lorenzini, E., Which boundaries for a tourism des na on? A proposal based on the 
criterion of homogeneous reputa on, O obre 2012. 

4. Vesan, P., The emergence and transforma on of the European agenda on flexicurity , O obre 2012. 

5. Maggioni, I., Marcoz, E. M., Mauri, C., Segmen ng networking orienta on in the hospitality indu-
stry: an empirical research on service bundling, Novembre 2012. 

 

LISTA DEI WORKING PAPER 2013 

6. Mastropaolo, A., Pallante, F., Radicioni, D.,  Legal documents categoriza on by compression, Aprile 
2013. 

7. Vitale, E., Quale democrazia nella rete?, Luglio 2013. 

 

LISTA DEI WORKING PAPER 2014 

8. Braga, M. D., Risk parity versus other μ-free strategies: a comparison in a triple view, Marzo 2014. 

9. Crespi, G. P., Weak Minimizers, Minimizers and Varia onal Inequali es for set valued Func ons. A 
blooming wreath?, Luglio 2014 




	Introduction
	Basics
	Minimality and variational inequality formulation
	Main Results
	Bibliography

